DocumentCode :
2541399
Title :
Dense multi-planar scene estimation from a sparse set of images
Author :
Argiles, Alberto ; Civera, Javier ; Montesano, Luis
Author_Institution :
Perception & Real-Time Group, Univ. de Zaragoza, Zaragoza, Spain
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
4448
Lastpage :
4454
Abstract :
Ego-motion estimation and 3D scene reconstruction from image data has been a long term aim both in the Robotics and Computer Vision communities. Nevertheless, while both visual SLAM and Structure from Motion already provide an accurate ego-motion estimation, visual scene estimation does not offer yet such a satisfactory result; being in most cases limited to a sparse set of salient points. In this paper we propose an algorithm to densify a sparse point-based reconstruction into a dense multi-plane based one, from the only input of a set of sparse images.
Keywords :
SLAM (robots); estimation theory; image reconstruction; robot vision; set theory; 3D scene reconstruction; SLAM; computer vision; dense multiplanar scene estimation; egomotion estimation; image sparse set; robotic vision; sparse point based reconstruction; Cameras; Estimation; Feature extraction; Image reconstruction; Silicon; Three dimensional displays; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6094458
Filename :
6094458
Link To Document :
بازگشت