• DocumentCode
    254183
  • Title

    Blind Image Quality Assessment Using Semi-supervised Rectifier Networks

  • Author

    Huixuan Tang ; Joshi, Niranjan ; Kapoor, Ajay

  • Author_Institution
    Univ. of Toronto, Toronto, ON, Canada
  • fYear
    2014
  • fDate
    23-28 June 2014
  • Firstpage
    2877
  • Lastpage
    2884
  • Abstract
    It is often desirable to evaluate images quality with a perceptually relevant measure that does not require a reference image. Recent approaches to this problem use human provided quality scores with machine learning to learn a measure. The biggest hurdles to these efforts are: 1) the difficulty of generalizing across diverse types of distortions and 2) collecting the enormity of human scored training data that is needed to learn the measure. We present a new blind image quality measure that addresses these difficulties by learning a robust, nonlinear kernel regression function using a rectifier neural network. The method is pre-trained with unlabeled data and fine-tuned with labeled data. It generalizes across a large set of images and distortion types without the need for a large amount of labeled data. We evaluate our approach on two benchmark datasets and show that it not only outperforms the current state of the art in blind image quality estimation, but also outperforms the state of the art in non-blind measures. Furthermore, we show that our semi-supervised approach is robust to using varying amounts of labeled data.
  • Keywords
    computer vision; distortion; learning (artificial intelligence); nonlinear functions; regression analysis; blind image quality assessment; image distortion; labeled data; machine learning; nonblind measure; nonlinear kernel regression function; quality score; semi-supervised rectifier neural network; Data models; Distortion measurement; Image quality; Kernel; Neural networks; Training; Training data;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Computer Vision and Pattern Recognition (CVPR), 2014 IEEE Conference on
  • Conference_Location
    Columbus, OH
  • Type

    conf

  • DOI
    10.1109/CVPR.2014.368
  • Filename
    6909764