Title : 
Faster elliptic curve point multiplication based on a novel greedy base-2,3 method
         
        
            Author : 
Cohen, Aaron E. ; Parhi, Keshab K.
         
        
            Author_Institution : 
Dept. of Electr. & Comput. Eng., Minnesota Univ., Twin Cities, MN
         
        
        
        
            Abstract : 
In this paper a novel pre-computation technique for scalar point multiplication on elliptic curves is proposed. Compared to standard affine coordinates without pre-computation this method achieves a performance increase of 23% while requiring an additional increase in control and logic for the pre-computation step. This method achieves a (2m bits times numpoints) reduction in storage overhead compared with other pre-computation techniques
         
        
            Keywords : 
cryptography; digital arithmetic; greedy algorithms; elliptic curve point multiplication; greedy base-2,3 method; scalar point multiplication; Algorithm design and analysis; Arithmetic; Cities and towns; Communication channels; Elliptic curve cryptography; Elliptic curves; Logic; Privacy; Public key cryptography; Runtime;
         
        
        
        
            Conference_Titel : 
Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International Symposium on
         
        
            Conference_Location : 
Island of Kos
         
        
            Print_ISBN : 
0-7803-9389-9
         
        
        
            DOI : 
10.1109/ISCAS.2006.1693349