Title :
Hybrid learning fuzzy approach to function approximation
Author :
Li, Chunshien ; Wu, Tsunghan ; Chiang, Tai-Wei ; Hu, Jhao-Wun
Author_Institution :
Dept. of Inf. Manage., Nat. Central Univ., Chungli, Taiwan
Abstract :
A new adaptive fuzzy approach to function approximation is proposed in the paper. A Takagi-Sugeno (T-S) type fuzzy system is used as the function approximator in the study. The proposed approach uses a hybrid learning method to train the T-S fuzzy system to achieve high accuracy in function approximation. The hybrid learning method combines both the particle swarm optimization (PSO) and the recursive least squares estimator (RLSE) to update the parameters of the fuzzy approximator. The PSO is used to update the premise part of the fuzzy system while the consequent part is updated by the RLSE. The PSO-RLSE learning method is very efficient in learning convergence. The proposed approach is compared to other methods. Three benchmark functions are used for the performance comparison. The proposed approach shows superior performance to compared approaches, in terms of approximation accuracy and learning convergence.
Keywords :
approximation theory; fuzzy systems; learning (artificial intelligence); particle swarm optimisation; Takagi-Sugeno type fuzzy system; adaptive fuzzy approach; function approximation; function approximator; fuzzy approximator; hybrid learning method; particle swarm optimization; recursive least squares estimator; Approximation algorithms; Function approximation; Fuzzy systems; Learning systems; Least squares approximation; Training data; Machine learning; function approximation; fuzzy; particle swarm optimization (PSO); recursive least-squares estimator (RLSE);
Conference_Titel :
Intelligent and Advanced Systems (ICIAS), 2010 International Conference on
Conference_Location :
Kuala Lumpur, Malaysia
Print_ISBN :
978-1-4244-6623-8
DOI :
10.1109/ICIAS.2010.5716191