Title :
TINAC: A fast and effective web video topic detection framework
Author :
Ao, Xiang ; Zhuang, Fuzhen ; He, Qing ; Shi, Zhongzhi
Author_Institution :
Key Lab. of Intell. Inf. Process., Inst. of Comput. Technol., Beijing, China
Abstract :
Most of the previous works for web video topic detection(e.g., graph-based co-clustering method) always encounter the problem of real-time topic detection, since they all suffer from the high computation complexity. Therefore, a fast topic detection is needed to meet users´ or administrators´ requirement in real-world scenarios. Along this line, we propose a fast and effective topic detection framework, in which video streams are first partitioned into buckets using a time-window function, and then an incremental hierarchical clustering algorithm is developed, finally a video-based fusion strategy is used to integrate information from multiple modalities. Furthermore, a series of novel similarity metrics are defined in the framework. The experimental results on three months´ YouTube videos demonstrate the effectiveness and efficiency of the proposed method.
Keywords :
Internet; computational complexity; pattern clustering; video signal processing; video streaming; TINAC; Web video topic detection framework; YouTube videos; computation complexity; incremental hierarchical clustering algorithm; time-window function; video streams; video-based fusion strategy; Clustering algorithms; Complexity theory; Measurement; Partitioning algorithms; Streaming media; Vectors; Visualization;
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on
Conference_Location :
Sichuan
Print_ISBN :
978-1-4673-0025-4
DOI :
10.1109/FSKD.2012.6234290