Title :
Indefinite Parzen Window for Spectral Clustering
Author_Institution :
Univ. of Tromso, Tromso
Abstract :
Kernel functions used to compute pairwise similarities in spectral clustering and kernel methods are almost exclusively positive semidefinite. We show that for a recent information theoretic spectral clustering algorithm, the theoretically optimal kernel is given by the indefinite Epanechnikov function via Parzen windowing for density estimation. We perform clustering using this indefinite kernel, and report results which show improved performance. Finally, we briefly indicate some properties of the negative spectrum of the corresponding indefinite kernel matrix.
Keywords :
matrix algebra; pattern clustering; indefinite Epanechnikov function; indefinite Parzen window; indefinite kernel matrix; pairwise similarities; spectral clustering algorithm; Clustering algorithms; Cost function; Councils; Eigenvalues and eigenfunctions; Estimation theory; Goniometers; Hilbert space; Kernel; Machine learning; Physics;
Conference_Titel :
Machine Learning for Signal Processing, 2007 IEEE Workshop on
Conference_Location :
Thessaloniki
Print_ISBN :
978-1-4244-1566-3
Electronic_ISBN :
1551-2541
DOI :
10.1109/MLSP.2007.4414338