Title :
ELIMED a new concept of hadrontherapy with laser-driven beams
Author :
Cirrone, Pablo G. A. ; Cuttone, G. ; Korn, Georg ; Maggiore, Manfredi ; Margarone, D. ; Bji, Bijan ; Calabretta, L. ; Cali, Claudio ; Caruso, A. ; Caruso, F. ; Cavallaro, Salvatore ; Gammino, S. ; Malfa, Giuseppe ; Manti, Lorenzo ; Passarello, Santi ; Pro
Author_Institution :
Ist. Naz. di Fis. Nucleare, Lab. Naz. Del Sud, Catania, Italy
fDate :
Oct. 27 2012-Nov. 3 2012
Abstract :
ELIMED (Medical Applications at Extreme Light Infrastructure) is a task-force originally born by an idea of ELI-Beams (Prague, CZ)and INFN-LNS (Italian Institute for Nuclear Physics of Catania, I) researchers. It now involves other groups interested in the possibility to design and develop a new generation of hadrontherapy facilities using laser-accelerated ion beams. ELIMED main goal is to perform proof-of-principle experiments aimed to demonstrate that laser-accelerated high-energy proton beams (up to 70 MeV in the first phase) can be potentially used for the specific case of ocular proton therapy. For this purpose new devices for beam handling and transport will be developed as well as new methods for radiobiology and dosimetry. The involvement of INFN-LNS group takes advantage of the well-established expertise in dosimetry measurements and Monte Carlo calculations for medical physics, which has been achieved in several years of eye tumor treatments in the CATANA proton therapy facility. Recently, in the framework of an INFN activity, they have also designed, fabricated, calibrated and experimentally tested at PALS laser laboratory (Cz) a Thomson Parabola ion spectrometer with a wide acceptance and able to characterize laser-driven proton beams up to 20 MeV.
Keywords :
Monte Carlo methods; dosimetry; eye; ion beams; particle spectrometers; proton beams; radiation therapy; tumours; CATANA proton therapy facility; ELIMED; INFN-LNS; Medical Applications at Extreme Light Infrastructure; Monte Carlo calculations; PALS laser laboratory; Thomson Parabola ion spectrometer; dosimetry measurements; eye tumor treatments; hadrontherapy facilities; laser-accelerated high-energy proton beams; laser-driven ion beams; medical physics; ocular proton therapy; proof-of-principle experiments; radiobiology;
Conference_Titel :
Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 2012 IEEE
Conference_Location :
Anaheim, CA
Print_ISBN :
978-1-4673-2028-3
DOI :
10.1109/NSSMIC.2012.6551462