DocumentCode :
2552979
Title :
On edge-balance index sets of the complete graphs
Author :
Ji, Yurong ; Zheng, Yuge
Author_Institution :
Dept. of Math., Henan Polytech. Univ., Jiaozuo, China
fYear :
2010
fDate :
16-18 April 2010
Firstpage :
309
Lastpage :
311
Abstract :
Let G be a simple graph with vertex set V(G) and edge set E(G), and let Z2= {0, 1}, For a given binary edge labeling f:E(G)→Z2, the edge labeling f induces a partial vertex labeling f*:V(G)→Z2 such that f*:V(G) = 1(0) iff the number of 1-edges (0-edges) is strictly greater than the number of 0-edges (l-edges) incident to v, otherwise f*(v) is undefined. For iϵZ2, let v(i) = card{vϵV(G): f*(v) = i}. and e(i) = card{eϵE(G):f(e) = i}, The edge-balance index sets of a graph G, EBI(G), is defined as {|v(0)-v(1)|: the edge labeling f satisfies |e(0)-e(1)|≤1}. In this paper, we completely determine the edge-balance index sets of the complete graphs with constructive proof.
Keywords :
computational complexity; graph theory; complete graphs; edge labeling; edge set; edge-balance index sets; partial vertex labeling; vertex set; Labeling; Mathematics; complete graph; edge labeling; edge-balance index set;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-5263-7
Electronic_ISBN :
978-1-4244-5265-1
Type :
conf
DOI :
10.1109/ICIME.2010.5478033
Filename :
5478033
Link To Document :
بازگشت