• DocumentCode
    2552979
  • Title

    On edge-balance index sets of the complete graphs

  • Author

    Ji, Yurong ; Zheng, Yuge

  • Author_Institution
    Dept. of Math., Henan Polytech. Univ., Jiaozuo, China
  • fYear
    2010
  • fDate
    16-18 April 2010
  • Firstpage
    309
  • Lastpage
    311
  • Abstract
    Let G be a simple graph with vertex set V(G) and edge set E(G), and let Z2= {0, 1}, For a given binary edge labeling f:E(G)→Z2, the edge labeling f induces a partial vertex labeling f*:V(G)→Z2 such that f*:V(G) = 1(0) iff the number of 1-edges (0-edges) is strictly greater than the number of 0-edges (l-edges) incident to v, otherwise f*(v) is undefined. For iϵZ2, let v(i) = card{vϵV(G): f*(v) = i}. and e(i) = card{eϵE(G):f(e) = i}, The edge-balance index sets of a graph G, EBI(G), is defined as {|v(0)-v(1)|: the edge labeling f satisfies |e(0)-e(1)|≤1}. In this paper, we completely determine the edge-balance index sets of the complete graphs with constructive proof.
  • Keywords
    computational complexity; graph theory; complete graphs; edge labeling; edge set; edge-balance index sets; partial vertex labeling; vertex set; Labeling; Mathematics; complete graph; edge labeling; edge-balance index set;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Management and Engineering (ICIME), 2010 The 2nd IEEE International Conference on
  • Conference_Location
    Chengdu
  • Print_ISBN
    978-1-4244-5263-7
  • Electronic_ISBN
    978-1-4244-5265-1
  • Type

    conf

  • DOI
    10.1109/ICIME.2010.5478033
  • Filename
    5478033