Title :
Bilateral physical interaction with a robot manipulator through a weighted combination of flow fields
Author :
Pistillo, Antonio ; Calinon, Sylvain ; Caldwell, Darwin G.
Author_Institution :
Department of Advanced Robotics, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, Italy
Abstract :
When collaboration between human users and robots involves physical interaction, the importance of the safety issue arises. We propose a method to transfer to robots several tasks demonstrated by the user through kinesthetic teaching and subsequently learned using a weighted combination of dynamical systems (DS). The approach used to encode the desired skills ensures a safe robot behavior during the task reproduction, allowing physical interaction with the user who can employ the manipulator as a tangible interface. By using a force sensor-less impedance controller with a back-drivable robot, this concept is exploited in two physical human-robot interaction (pHRI) scenarios. The first considers an emergency situation in which the user can stop or pause a task execution by grasping and moving the robot away from the region of space associated to the skill. The second studies the possibility to select one among several learned tasks and switch to its execution by physically guiding the robot towards the task region.
Keywords :
Acceleration; Gravity; Robot kinematics; Robot sensing systems; Safety; Trajectory;
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-61284-454-1
DOI :
10.1109/IROS.2011.6095043