Title :
Multiobjective Particle Swarm optimizer with dynamic epsilon-dominance sorting
Author :
Shi-Zheng Zhao ; Suganthan, P. ; Qu, Boyang
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
Abstract :
In this paper, we propose a general dynamic epsilon non-domination sorting procedure to replace the exhaustive search approach used in the literature to tune the numerical values of the epsilon parameter of each objective in a multiobjective optimization problem (MOP). We integrate this approach into an MOPSO (Dyn-ε -MOPSO). Comparative evaluations using several multi-objectives test problems demonstrate the merit of our proposed dynamic epsilon dominance sorting.
Keywords :
particle swarm optimisation; sorting; dynamic epsilon non-domination sorting procedure; dynamic epsilon-dominance sorting; epsilon parameter; exhaustive search approach; multiobjective optimization problem; multiobjective particle swarm optimizer; Sorting; Dynamic ε -dominance Sorting; Multiobjective; Particle Swarm Optimizer;
Conference_Titel :
Nature and Biologically Inspired Computing (NaBIC), 2010 Second World Congress on
Conference_Location :
Fukuoka
Print_ISBN :
978-1-4244-7377-9
DOI :
10.1109/NABIC.2010.5716315