Title :
Adaptive Feature Selection for Infrared Object Tracking
Author_Institution :
Sch. of Commun. & Inf. Eng., Xi´´an Univ. of Sci. & Technol., Xi´´an, China
Abstract :
This paper proposes a novel object tracking algorithm for the infrared object tracking. To improve the discrimination ability of the object model, the gray features which can be used to distinguish the object from its surrounding background is chosen to represent the object. This algorithm defines a discrimination function of gray features, and the "good" gray features are selected by analyzing the discrimination function in a large scale. To deal with the variation of the intensities of the infrared object and the background during tracking, an adaptive feature updating strategy is proposed. The two dimension histogram is built based on the selected features to model the object, and the object tracking is achieved by mean shift algorithm. The experimental results using real-life infrared image sequences are shown to validate the robustness and efficiency of the proposed algorithm.
Keywords :
image sequences; optical tracking; adaptive feature selection; discrimination function; gray feature; infrared image sequences; infrared object tracking; Algorithm design and analysis; Histograms; Image sequences; Kernel; Pixel; Robustness; Target tracking;
Conference_Titel :
Wireless Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-3708-5
Electronic_ISBN :
978-1-4244-3709-2
DOI :
10.1109/WICOM.2010.5600691