DocumentCode :
2554780
Title :
A self-adjusting knee exoskeleton for robot-assisted treatment of knee injuries
Author :
Ergin, Mehmet Alper ; Patoglu, Volkan
Author_Institution :
Faculty of Engineering and Natural Sciences of Sabanci University, İstanbul, Turkey
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
4917
Lastpage :
4922
Abstract :
In this study, we present a novel active device for robot-assisted rehabilitation that accommodates transitional movements of the knee joint as well as its rotation, enabling a perfect match between human joint axes and the device axes. Automatically adjusting its joint axes, the proposed device is not only capable of guaranteeing ergonomy and comfort throughout the therapy, but also extends the usable range of motion for the knee joint. Moreover, the adjustability feature significantly shortens the setup time required to attach the patient to the exoskeleton, allowing more effective time be spend on exercises instead of wasting it for adjustments. The proposed system is different from the similar works in literature in that it supports both passive translational movements of the knee joint and independent active control of these degrees of freedom. In particular, we introduce implementation details of a prototype that features compact design and combines the power of three actuators to achieve high rotational torques, detail the model based impedance controller utilized to adjust interaction forces and present the experimental characterization of the exoskeleton.
Keywords :
Exoskeletons; Humans; Joints; Kinematics; Knee; Robots; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6095073
Filename :
6095073
Link To Document :
بازگشت