DocumentCode :
2556930
Title :
Quantitative evaluation of performance through bootstrapping: edge detection
Author :
Cho, Kyujin ; Meer, Peter ; Cabrera, Javier
Author_Institution :
Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
fYear :
1995
fDate :
21-23 Nov 1995
Firstpage :
491
Lastpage :
496
Abstract :
A new quantitative performance evaluation technique for computer vision systems is proposed. In real situations the complexity of input data and/or computational procedure can make the traditional error propagation methods infeasible. Using bootstrapping, a numerical technique for deriving statistical characteristics from a single sample, the authors perturb the nuisance properties of the input image to obtain distributions for the output variables. The performance thus is evaluated for the given input and system and not under simplifying assumptions. The task of edge detection is used as example
Keywords :
computational complexity; computer vision; edge detection; parameter estimation; performance evaluation; statistical analysis; bootstrapping; complexity; computer vision systems; edge detection; nuisance properties; numerical technique; quantitative performance evaluation; statistical characteristics; Computer errors; Computer vision; Distributed computing; Embedded computing; Gaussian noise; Image edge detection; Layout; Probability; Statistical distributions; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision, 1995. Proceedings., International Symposium on
Conference_Location :
Coral Gables, FL
Print_ISBN :
0-8186-7190-4
Type :
conf
DOI :
10.1109/ISCV.1995.477049
Filename :
477049
Link To Document :
بازگشت