Title :
Application of VisRad modeling to design of hohlraum experiments on Zebra with enhanced current
Author :
Shlyaptseva, V.V. ; Kantsyrev, V.L. ; Esaulov, A.A. ; Safronova, A.S. ; Chuvatin, A.S. ; Rudakov, L.I. ; MacFarlane, J.J. ; Golovkin, I.
Author_Institution :
Univ. of Nevada, Reno, NV, USA
Abstract :
VisRad (Prism Computational Sciences), a 3-D view factor code, is used to simulate the multi-dimensional radiation environment within a compact hohlraum. A new hohlraum design proposed in B. Jones, et al. [PRL, v.104, 125001, (2010)] incorporates multiple compact (mm-scale) planar wire array (PWA) x-ray sources that surround a target in the center of the hohlraum cavity, allowing a reduction of hohlraum surface area and potentially providing a hotter x-ray environment. The first experiments with this prototype of hohlraum with two magnetically-decoupled PWA sources were performed on the 1.7 MA Zebra at the University of Nevada, Reno without significant loss of radiation yields and power due to implementation of a new Load Current Multiplier (LCM). VisRad simulations have predicted a center hohlraum radiation temperature >; 30eV, showing good correlation to experimental EUV data (hν >; 17 eV). Special emphasis is made on Trad and uniformity at the test target surface. Also discussed is the scaling of the new hohlraum multisource configurations using VisRad for higher current, 20 MA-scale generators.
Keywords :
design of experiments; plasma X-ray sources; plasma simulation; 3D view factor code; EUV data; VisRad modeling; VisRad simulations; X-ray environment; center hohlraum radiation temperature; compact hohlraum; current 1.7 MA; current 20 MA; enhanced current; hohlraum cavity center; hohlraum design; hohlraum multisource configuration scaling; hohlraum prototype; hohlraum surface area reduction; load current multiplier; magnetically-decoupled planar wire array sources; multidimensional radiation environment; multiple compact planar wire array X-ray sources; test target surface; Arrays; Cavity resonators; Computational modeling; Educational institutions; Prototypes; USA Councils; Wires;
Conference_Titel :
Plasma Science (ICOPS), 2012 Abstracts IEEE International Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-1-4577-2127-4
Electronic_ISBN :
0730-9244
DOI :
10.1109/PLASMA.2012.6383643