DocumentCode :
2560326
Title :
Non-parametric Least Square Support Vector Machine
Author :
Guo, Ning ; Chen, Xiankai ; Ma, Yingdong ; Chen, Gorge
Author_Institution :
Center of Digital Media Comput., Shenzhen Inst. of Adv. Technol., Shenzhen, China
fYear :
2012
fDate :
29-31 May 2012
Firstpage :
93
Lastpage :
96
Abstract :
Distinguished from Semi-Definite Programming (SDP) and Quadratically Constrained Quadratic Program (QCQP) which are classical solutions of multiple kernel learning, we apply Semi-Infinite Linear Program (SILP) to deal with multiple kernels learning in Least Square Support Vector Machine (LSSVM). Furthermore the regularization parameter is added as an extra variable to learn. This algorithm avoids the computational cost consuming by cross validation and make algorithm more convenient and practical.
Keywords :
learning (artificial intelligence); least squares approximations; linear programming; quadratic programming; support vector machines; LSSVM; QCQP; SDP; SILP; cross validation; multiple kernel learning; nonparametric least square support vector machine; quadratically constrained quadratic program; regularization parameter; semidefinite programming; semiinfinite linear program; Accuracy; Classification algorithms; Kernel; Machine learning; Scalability; Support vector machines; Training; LSSVM; MKL; QCQP; SDP; SILP optimal solution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation (ICNC), 2012 Eighth International Conference on
Conference_Location :
Chongqing
ISSN :
2157-9555
Print_ISBN :
978-1-4577-2130-4
Type :
conf
DOI :
10.1109/ICNC.2012.6234737
Filename :
6234737
Link To Document :
بازگشت