DocumentCode :
2566361
Title :
Lyapunov functions for discrete-time multivariable Popov criterion with indefinite multipliers
Author :
Ahmad, N. Syazreen ; Heath, W.P. ; Li, Guang
Author_Institution :
Control Syst. Centre, Univ. of Manchester, Manchester, UK
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
1559
Lastpage :
1564
Abstract :
This paper shows the existence of Lur´e-Postkinov type Lyapunov functions for the discrete-time multivariable Popov criterion with indefinite multipliers. The nonlinearities in the Lur´e systems considered here are monotonic, sector- and slope-restricted. We discuss the case where the nonlinearities are diagonal. Our derivation is based on the discrete-time Kalman-Yakubovich-Popov (KYP) lemma and the S-Procedure, and results in Linear Matrix Inequality (LMI) conditions which can be solved using convex optimization methods.
Keywords :
Lyapunov methods; Popov criterion; convex programming; discrete time systems; linear matrix inequalities; multivariable control systems; Lur´e-Postkinov type Lyapunov functions; S-procedure; convex optimization; discrete-time Kalman-Yakubovich-Popov lemma; discrete-time multivariable Popov criterion; indefinite multipliers; linear matrix inequality; Heating; Helium; Lead; Lyapunov method; Stability criteria; Tin;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717085
Filename :
5717085
Link To Document :
بازگشت