DocumentCode :
2567214
Title :
Fundamental performance limitations with Kullback-Leibler control cost
Author :
Sun, Yu ; Mehta, Prashant G.
Author_Institution :
Dept. of Mech. Sci. & Eng., Univ. of Illinois, Urbana, IL, USA
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
7063
Lastpage :
7068
Abstract :
This research concerns fundamental performance limitations in control of discrete time nonlinear systems. The fundamental limitations are expressed in terms of the average cost of an infinite horizon optimal control problem. The control cost is defined by using a certain Kullback-Leibler divergence metric recently introduced by Todorov. The limitations are obtained via analysis of a linear eigenvalue problem defined only by the open loop dynamics. For a linear time invariant (LTI) system the fundamental limitation is shown to depend upon the unstable eigenvalues, as in the classical Bode formula. For a more general class of nonlinear systems, it is shown that the limitation arise only if the open-loop dynamics are non-ergodic.
Keywords :
cost optimal control; discrete time systems; eigenvalues and eigenfunctions; infinite horizon; linear systems; nonlinear control systems; open loop systems; Kullback-Leibler control cost; Kullback-Leibler divergence metric; LTI system; classical Bode formula; discrete time nonlinear systems; fundamental performance limitations; infinite horizon optimal control problem; linear eigenvalue problem; linear time invariant system; non-ergodic; open loop dynamics; Eigenvalues and eigenfunctions; Gaussian noise; Kernel; Markov processes; Nonlinear dynamical systems; Optimal control;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717133
Filename :
5717133
Link To Document :
بازگشت