Title :
Convergence analysis of MISG algorithms for MIMO systems
Author :
Han, Lili ; Ding, Feng
Author_Institution :
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
Abstract :
This paper develops a multi-innovation stochastic gradient (MISG) algorithm for multi-input, multi-output systems. The convergence analysis using the martingale convergence theorem shows that the parameter estimates by the MISG algorithm consistently converge to the true parameters under the persistent excitation condition. The MISG algorithm uses not only the current innovation but also the past innovation at each iteration and repeatedly utilizes the available input-output data, thus the parameter estimation accuracy can be improved. The simulation example confirms the theoretical results.
Keywords :
MIMO systems; convergence; gradient methods; parameter estimation; stochastic processes; MIMO systems; convergence analysis; martingale convergence theorem; multiinnovation stochastic gradient algorithm; multiinput multioutput systems; parameter estimation; persistent excitation condition; Algorithm design and analysis; Control systems; Convergence; Covariance matrix; MIMO; Matrix decomposition; Parameter estimation; Stochastic systems; System identification; Technological innovation; martingale convergence theorem; multi-innovation identification algorithm; multi-input; multi-output systems;
Conference_Titel :
Control and Decision Conference, 2008. CCDC 2008. Chinese
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-1733-9
Electronic_ISBN :
978-1-4244-1734-6
DOI :
10.1109/CCDC.2008.4598188