DocumentCode :
2569457
Title :
Identification of nonlinear systems using misspecified predictors
Author :
Larsson, Christian A. ; Hjalmarsson, Håkan ; Rojas, Cristian R.
Author_Institution :
Dept. of Autom. Control, Kungliga Tek. Hogskolan, Stockholm, Sweden
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
7214
Lastpage :
7219
Abstract :
Identification of nonlinear systems is an important albeit difficult task. This work considers parameter estimation, using the prediction error method, of the class of models that fit into a nonlinear state space formulation. Finding the optimal predictor for such nonlinear models, if at all possible, often requires significant effort. As an alternative, techniques from indirect inference are used to circumvent this problem. A misspecified predictor, parameterized by a new set of parameters, is used in lieu of the optimal predictor. These new parameters are found numerically by using simulations of the model to be identified. The proposed method is applied to simulation examples and real process data with encouraging results.
Keywords :
nonlinear systems; optimal systems; parameter estimation; predictor-corrector methods; state estimation; misspecified predictor; nonlinear model; nonlinear state space formulation; nonlinear system; optimal predictor; parameter estimation; prediction error method; real process data; Biological system modeling; Data models; Monte Carlo methods; Noise; Numerical models; Optimization; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717249
Filename :
5717249
Link To Document :
بازگشت