DocumentCode :
2576418
Title :
A robust SDP approach to system identification with roughly quantized data
Author :
Konishi, Katsumi
Author_Institution :
Dept. of Comput. Sci., Kogakuin Univ., Tokyo, Japan
fYear :
2009
fDate :
11-14 Oct. 2009
Firstpage :
2800
Lastpage :
2805
Abstract :
This paper proposes an identification method for linear systems with roughly quantized outputs. Measurement data sampled from low resolution sensors have large quantization errors, which deteriorate the identification accuracy. While the identification problem is formulated into quadratic programming with uncertainty, a proposed method provides an approximate optimal solution via semidefinite programming. Numerical examples demonstrate that we can estimate both plant parameters and true outputs in practical time and show the effectiveness of the proposed method.
Keywords :
least squares approximations; linear systems; parameter estimation; quadratic programming; convex optimization problem; least square method; linear system; parameter estimation; quadratic programming with uncertainty; quantization error estimation; semidefinite programming; system identification; Automobiles; Cybernetics; Least squares methods; Mechanical sensors; Parameter estimation; Quadratic programming; Quantization; Robustness; Spatial resolution; System identification; least square method; quantization error; semidefinite programming; system identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2009. SMC 2009. IEEE International Conference on
Conference_Location :
San Antonio, TX
ISSN :
1062-922X
Print_ISBN :
978-1-4244-2793-2
Electronic_ISBN :
1062-922X
Type :
conf
DOI :
10.1109/ICSMC.2009.5346585
Filename :
5346585
Link To Document :
بازگشت