DocumentCode :
2577248
Title :
Convergence properties of an iterative prediction approach to nonlinear SEM parameter estimation
Author :
Farina, Marcello ; Piroddi, Luigi
Author_Institution :
Dipt. di Elettron. e Inf., Politec. di Milano, Milan, Italy
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
7226
Lastpage :
7231
Abstract :
This work extends to the nonlinear framework some previous results concerning the convergence of simulation error minimization (SEM) methods for parameter estimation based on an iterative predictor estimation with increasing prediction horizon. Conditions for the applicability of the approach to various model classes, including bilinear, Hammerstein, Wiener and LPV models, are also discussed. The effectiveness of the iterative predictor estimation approach is then shown by means of a simulation example.
Keywords :
iterative methods; minimisation; nonlinear systems; parameter estimation; Hammerstein model; LPV models; Wiener model; bilinear model; convergence properties; iterative predictor estimation approach; nonlinear SEM parameter estimation; simulation error minimization methods; Estimation; Mathematical model; Noise; Numerical analysis; Parameter estimation; Polynomials; Predictive models;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717738
Filename :
5717738
Link To Document :
بازگشت