Title :
Estimating the principal eigenvector of a stochastic matrix: Mirror Descent Algorithms via game approach with application to PageRank problem
Author :
Nazin, Alexander
Author_Institution :
Lab. for Adaptive & Robust Control Syst., Inst. of Control Sci. RAS, Moscow, Russia
Abstract :
The problem of estimating the principal eigenvector related to the largest eigenvalue of a given (left) stochastic matrix A has many applications in ranking search results, multi-agent consensus, networked control and data mining. The well-known power method is a typical tool, but it modifies matrix and, therefore, the related solution. We propose and study both deterministic and randomized game algorithms based on Mirror Descent (MD) method which are intended for bounding the Euclidean norm residual ∥Ax-x∥2 on the standard simplex in ℝN. We prove the explicit uniform upper bounds of type O(√ln(N)/n) with arbitrary horizon n ≥ 1. They improve the similar earlier results with respect to n which have been proved for the squared norm residual, i.e. ∥Ax-x∥22. Numerical results for N = 100 illustrate the general decrease of the norm residual ∥Ax̂t-x̂t∥2 in time t and corroborate theoretical results.
Keywords :
Internet; data mining; deterministic algorithms; eigenvalues and eigenfunctions; game theory; matrix algebra; multi-agent systems; networked control systems; random processes; stochastic processes; Euclidean norm residual; PageRank problem; data mining; deterministic game algorithm; mirror descent algorithm; multiagent consensus; networked control; principal eigenvector estimation; randomized game algorithm; stochastic matrix; Algorithm design and analysis; Games; Linear matrix inequalities; Minimization; Mirrors; Stochastic processes; Upper bound;
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
Print_ISBN :
978-1-4244-7745-6
DOI :
10.1109/CDC.2010.5717923