Title :
Analysis of blocking dynamic circuits
Author :
Thorp, Tyler ; Liu, Dean
Author_Institution :
Washington Univ., St. Louis, MO, USA
Abstract :
In order for dynamic circuits to operate correctly, their inputs must be monotonically rising during evaluation. Blocking dynamic circuits satisfy this constraint by delaying evaluation until all inputs have been properly setup relative to the evaluation clock. By viewing dynamic gates as latches, we demonstrate that the optimal delay of a blocking dynamic gate may occur when the setup time is negative. With blocking dynamic circuits, cascading low-skew dynamic gates allows each dynamic gate to tolerate a degraded input level. The larger noise margin provides greater flexibility with the delay vs. noise margin trade-off (i.e. the circuit robustness vs. speed tradeoff). This paper generalizes blocking dynamic circuits and provides a systematic approach for assigning clock phases, given delay and noise margin constraints. Using this framework, one can analyze any logic network consisting of blocking dynamic circuits.
Keywords :
logic design; logic gates; blocking dynamic circuits; blocking dynamic gate; clock phases; dynamic circuits; dynamic gates; logic network; Circuit analysis computing; Clocks; Degradation; Delay effects; Equations; Logic; Sampling methods; Switching circuits; Timing; Very large scale integration;
Conference_Titel :
Computer Design: VLSI in Computers and Processors, 2002. Proceedings. 2002 IEEE International Conference on
Print_ISBN :
0-7695-1700-5
DOI :
10.1109/ICCD.2002.1106758