DocumentCode :
2582433
Title :
Approximative classification of regions in parameter spaces of nonlinear ODEs yielding different qualitative behavior
Author :
Hasenauer, Jan ; Breindl, Christian ; Waldherr, Steffen ; Allgower, Frank
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
4114
Lastpage :
4119
Abstract :
Nonlinear dynamical systems can show a variety of different qualitative behaviors depending on the actual parameter values. As in many situations of practical relevance the parameter values are not precisely known it is crucial to determine the region in parameter space where the system exhibits the desired behavior. In this paper we propose a method to compute an approximative, analytical description of this region. Employing Markov-chain Monte-Carlo sampling, nonlinear support vector machines, and the novel notion of margin functions, an approximative classification function is determined. The properties of the method are illustrated by studying the dynamic behavior of the Higgins-Sel´kov oscillator.
Keywords :
Markov processes; Monte Carlo methods; approximation theory; nonlinear differential equations; pattern classification; support vector machines; Higgins-Selkov oscillator; Markov-chain Monte-Carlo sampling; approximative region classification; margin functions notion; nonlinear dynamical systems; nonlinear ordinary differential equations; nonlinear support vector machines; parameter values; Approximation methods; Limit-cycles; Manifolds; Oscillators; Steady-state; Support vector machines; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5718044
Filename :
5718044
Link To Document :
بازگشت