Title :
Bandwidth-constrained mapping of cores onto NoC architectures
Author :
Murali, Srinivasan ; De Micheli, Giovanni
Author_Institution :
Comput. Syst. Lab., Stanford Univ., CA, USA
Abstract :
We address the design of complex monolithic systems, where processing cores generate and consume a varying and large amount of data, thus bringing the communication links to the edge of congestion. Typical applications are in the area of multi-media processing. We consider a mesh-based networks on chip (NoC) architecture, and we explore the assignment of cores to mesh cross-points so that the traffic on links satisfies bandwidth constraints. A single-path deterministic routing between the cores places high bandwidth demands on the links. The bandwidth requirements can be significantly reduced by splitting the traffic between the cores across multiple paths. In this paper, we present NMAP, a fast algorithm that maps the cores onto a mesh NoC architecture under bandwidth constraints, minimizing the average communication delay. The NMAP algorithm is presented for both single minimum-path routing and split-traffic routing. The algorithm is applied to a benchmark DSP design and the resulting NoC is built and simulated at cycle accurate level in SystemC using macros from the ×pipes library. Also, experiments with six video processing applications show significant savings in bandwidth and communication cost for NMAP algorithm when compared to existing algorithms.
Keywords :
digital signal processing chips; macros; multimedia communication; packet switching; system-on-chip; telecommunication links; telecommunication network routing; ×pipes library; DSP design; NMAP algorithm; SystemC; bandwidth constrained mapping; bandwidth constraints; communication cost; communication delay; communication links; macros; mesh based networks-on-chip architecture; monolithic systems; multimedia processing; packet switching; processing cores; single path deterministic routing; split traffic routing; video processing; Algorithm design and analysis; Bandwidth; Costs; Delay; Digital signal processing; Libraries; Multimedia communication; Network-on-a-chip; Routing; Telecommunication traffic;
Conference_Titel :
Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings
Print_ISBN :
0-7695-2085-5
DOI :
10.1109/DATE.2004.1269002