Author :
Quay, R. ; van Raay, F. ; Kühn, J. ; Kiefer, R. ; Waltereit, P. ; Zorcic, M. ; Musser, M. ; Bronner, W. ; Dammann, M. ; Seelmann-Eggebert, M. ; Schlechtweg, M. ; Mikulla, M. ; Ambacher, O. ; Thorpe, J. ; Riepe, K. ; van Rijs, F. ; Saad, M. ; Harm, L. ; Ro
Abstract :
This paper describes efficient GaN/AlGaN HEMTs and MMICs for L/S-band (1-4 GHz) and X-band frequencies (8-12 GHz) on three-inch s.i. SiC substrates. Dual-stage MMICs in microstrip transmission-line technology yield a power-added efficiency of ¿40% at 8.56 GHz for a power level of ¿11 W. A single-stage MMIC yields a PAE of ¿55% with 6 W of output power at VDS= 20 V. The related mobile communication power HEMT process yields an average power density of 10 W/mm at 2 GHz and VDS= 50 V. The average PAE is 61.3% with an average linear gain 24.4 dB and low standard deviation of all parameters. The devices yield more than 25 W/mm of output power at 2 GHz when operated in cw at VDS= 100 V with an associated PAE of ¿60%. The GaN HEMT process with 0.5 ¿m gate-length yields an extrapolated lifetime of 105 h when operated at VDS= 50 V at a channel temperature of 90°C. When operated at 2 GHz devices with 480 ¿m gate-width yield a change of the RF power-gain of less than 0.2 dB under high gain-compression at VDS= 50 V and a channel temperature of 250°C.
Keywords :
III-V semiconductors; MMIC power amplifiers; aluminium compounds; gallium compounds; high electron mobility transistors; high-frequency transmission lines; millimetre wave power amplifiers; GaN-AlGaN; HEMT; MMIC; SiC; X-band frequencies; channel temperature; frequency 1 GHz to 4 GHz; frequency 8 GHz to 12 GHz; high gain-compression; microstrip transmission-line technology; power amplifiers; temperature 250 degC; temperature 90 degC; voltage 100 V; voltage 20 V; voltage 50 V; Aluminum gallium nitride; Frequency; Gallium nitride; HEMTs; MMICs; Microstrip; Power amplifiers; Power generation; Silicon carbide; Temperature;