DocumentCode :
2587076
Title :
Modeling and online parameter identification of Li-Polymer battery cells for SOC estimation
Author :
Rahimi-Eichi, H. ; Baronti, F. ; Chow, M.-Y.
Author_Institution :
Dept. of Electr. & Comput. Eng., North Carolina State Univ., Raleigh, NC, USA
fYear :
2012
fDate :
28-31 May 2012
Firstpage :
1336
Lastpage :
1341
Abstract :
Finding an accurate and easily to implement model of batteries is an essential step in properly estimating the state of charge (SOC) of the battery in real-time. In this paper, an equivalent circuit based battery model with nonlinear relationship between the open circuit voltage (VOC) and the SOC is projected into several piece-wise linear functions. Moving window Least Squares (LS) parameter identification technique is then utilized to estimate and update the parameters of the battery model in each sampling time. The continuously updated parameters are fed to a linear observer to estimate the SOC of the battery. The effectiveness of the proposed modeling and estimation approach are verified experimentally on Lithium Polymer batteries.
Keywords :
electric charge; equivalent circuits; lithium; parameter estimation; piecewise linear techniques; polymers; secondary cells; Least Squares parameter identification; Li; SOC estimation; equivalent circuit based battery model; lithium-polymer battery cells; nonlinear relationship; online parameter identification; open circuit voltage; piece wise linear function; state of charge estimation; Batteries; Equations; Integrated circuit modeling; Mathematical model; Observers; Parameter estimation; System-on-a-chip; Battery modeling; PHEV/PEV; State-of-Charge estimation; parameter identification; piece-wise linearization; state observer design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Industrial Electronics (ISIE), 2012 IEEE International Symposium on
Conference_Location :
Hangzhou
ISSN :
2163-5137
Print_ISBN :
978-1-4673-0159-6
Electronic_ISBN :
2163-5137
Type :
conf
DOI :
10.1109/ISIE.2012.6237284
Filename :
6237284
Link To Document :
بازگشت