Title :
Adaptive neuro-fuzzy inference system for oscillometric blood pressure estimation
Author :
Forouzanfar, Mohamad ; Dajani, Hilmi R. ; Groza, Voicu Z. ; Bolic, Miodrag ; Rajan, Sreeraman
Author_Institution :
Sch. of Inf. Technol. & Eng. (SITE), Univ. of Ottawa, Ottawa, ON, Canada
fDate :
April 30 2010-May 1 2010
Abstract :
This paper presents a novel approach using principal component analysis (PCA) and adaptive neuro-fuzzy inference system (ANFIS) for estimation of blood pressure (BP) from oscillometric waveforms. The proposed method consists of three stages. In the first stage, the oscillation amplitudes (OAs) of the oscillometric waveforms are represented as a function of the cuff pressure. In the second stage, the PCA is utilized to reduce the dimensionality of the input space by extracting the most effective features from the OAs. Finally, in the third stage, the ANFIS is employed to perform the BP estimation. The proposed method is tested on a dataset collected from 85 subjects and the results are compared with conventional maximum amplitude algorithm and published neural network-based methods. It is found that the proposed method achieves lower values of mean absolute error and standard deviation of error in estimation of BP compared with the other studied methods.
Keywords :
blood pressure measurement; medical computing; neural nets; neurophysiology; principal component analysis; adaptive neuro-fuzzy inference system; blood pressure; conventional maximum amplitude algorithm; cuff pressure; dataset; error standard deviation; mean absolute error; neural network-based methods; oscillation amplitudes; oscillometric blood pressure estimation; oscillometric waveforms; principal component analysis; Adaptive systems; Arteries; Biomedical monitoring; Blood pressure; Function approximation; Fuzzy logic; Fuzzy systems; Measurement techniques; Neural networks; Principal component analysis; adaptive neuro-fuzzy inference system (ANFIS); blood pressure (BP) estimation; neural network (NN); oscillometric waveforms; principal component analysis (PCA);
Conference_Titel :
Medical Measurements and Applications Proceedings (MeMeA), 2010 IEEE International Workshop on
Conference_Location :
Ottawa, ON
Print_ISBN :
978-1-4244-6288-9
DOI :
10.1109/MEMEA.2010.5480225