Title :
A graph cut algorithm for generalized image deconvolution
Author :
Raj, Ashish ; Zabih, Ramin
Author_Institution :
California Univ., San Francisco, CA
Abstract :
The goal of deconvolution is to recover an image x from its convolution with a known blurring function. This is equivalent to inverting the linear system y = Hx. In this paper, we consider the generalized problem where the system matrix H is an arbitrary nonnegative matrix. Linear inverse problems can be solved by adding a regularization term to impose spatial smoothness. To avoid oversmoothing, the regularization term must preserve discontinuities; this results in a particularly challenging energy minimization problem. Where H is diagonal, as occurs in image denoising, the energy function can be solved by techniques such as graph cuts, which have proven to be very effective for problems in early vision. When H is nondiagonal, however, the data cost for a pixel to have a intensity depends on the hypothesized intensities of nearby pixels, so existing graph cut methods cannot be applied. This paper shows how to use graph cuts to obtain a discontinuity preserving solution to a linear inverse system with an arbitrary non-negative system matrix. We use a dynamically chosen approximation to the energy which can he minimized by graph cuts; minimizing this approximation also decreases the original energy. Experimental results are shown for MRI reconstruction from Fourier data
Keywords :
graph theory; image restoration; inverse problems; matrix algebra; MRI reconstruction; blurring function; graph cut algorithm; image deconvolution; image recovery; linear inverse problems; system matrix; Convolution; Costs; Deconvolution; Equations; Image denoising; Image reconstruction; Inverse problems; Linear systems; Magnetic resonance imaging; Sparse matrices;
Conference_Titel :
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7695-2334-X
DOI :
10.1109/ICCV.2005.8