DocumentCode :
2590403
Title :
Training a FIS with EPSO under an Entropy Criterion for Wind Power prediction
Author :
Miranda, V. ; Cerqueira, C. ; Monteiro, C.
Author_Institution :
INESC Porto
fYear :
2006
fDate :
11-15 June 2006
Firstpage :
1
Lastpage :
8
Abstract :
This paper summarizes efforts in understanding the possible application of information theoretic learning principles to power systems. It presents the application of Renyi´s entropy combined with Parzen windows as a measure of information content of the error distribution in model parameter estimation in supervised learning. It illustrates the concept with an application to the prediction of power generated in a wind park, made by Takagi-Sugeno fuzzy inference systems, whose parameters are discovered with an EPSO-evolutionary particle swarm optimization algorithm
Keywords :
entropy; fuzzy neural nets; fuzzy systems; parameter estimation; particle swarm optimisation; wind power; EPSO; FIS; Parzen window; Renyi´s entropy; error distribution; evolutionary particle swarm optimization algorithm; fuzzy inference systems; parameter estimation; supervised learning; wind power prediction; Entropy; Parameter estimation; Power generation; Power system measurements; Power system modeling; Supervised learning; Wind energy; Wind energy generation; Wind forecasting; Wind power generation; Information theoretic learning; fuzzy inference systems; power systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Probabilistic Methods Applied to Power Systems, 2006. PMAPS 2006. International Conference on
Conference_Location :
Stockholm
Print_ISBN :
978-91-7178-585-5
Type :
conf
DOI :
10.1109/PMAPS.2006.360208
Filename :
4202220
Link To Document :
بازگشت