Title :
High mobility Si/SiGe strained channel MOS transistors with HfO/sub 2//TiN gate stack
Author :
Datta, S. ; Dewey, G. ; Doczy, M. ; Doyle, B.S. ; Jin, B. ; Kavalieros, J. ; Kotlyar, R. ; Metz, M. ; Zelick, N. ; Chau, R.
Author_Institution :
Components Res., Intel Corp., Hillsboro, OR, USA
Abstract :
We integrate a strained Si channel with HfO/sub 2/ dielectric and TiN metal gate electrode to demonstrate NMOS transistors with electron mobility better than the universal mobility curve for SiO/sub 2/, inversion equivalent oxide thickness of 1.4 nm (EOT=1 nm), and with three orders of magnitude reduction in gate leakage. To understand the physical mechanism that improves the inversion electron mobility at the HfO/sub 2//strained Si interface, we measure mobility at various temperatures and extract the various scattering components.
Keywords :
Ge-Si alloys; MOSFET; dielectric thin films; electron mobility; elemental semiconductors; hafnium compounds; leakage currents; semiconductor materials; silicon; titanium compounds; 1 nm; EOT; HfO/sub 2/ dielectric; HfO/sub 2/-TiN-Si-SiGe; HfO/sub 2//TiN gate stack; NMOS transistors; TiN metal gate electrode; electron mobility; gate leakage; high mobility MOS transistors; inversion equivalent oxide thickness; strained channel MOS transistors; Dielectrics; Electrodes; Electron mobility; Gate leakage; Germanium silicon alloys; Hafnium oxide; MOSFETs; Silicon germanium; Temperature; Tin;
Conference_Titel :
Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International
Conference_Location :
Washington, DC, USA
Print_ISBN :
0-7803-7872-5
DOI :
10.1109/IEDM.2003.1269365