Title :
Object recognition in high clutter images using line features
Author :
David, Philip ; DeMenthon, Daniel
Author_Institution :
Army Res. Lab., Adelphi, MD
Abstract :
We present an object recognition algorithm that uses model and image line features to locate complex objects in high clutter environments. Finding correspondences between model and image features is the main challenge in most object recognition systems. In our approach, corresponding line features are determined by a three-stage process. The first stage generates a large number of approximate pose hypotheses from correspondences of one or two lines in the model and image. Next, the pose hypotheses from the previous stage are quickly ranked by comparing local image neighborhoods to the corresponding local model neighborhoods. Fast nearest neighbor and range search algorithms are used to implement a distance measure that is unaffected by clutter and partial occlusion. The ranking of pose hypotheses is invariant to changes in image scale, orientation, and partially invariant to affine distortion. Finally, a robust pose estimation algorithm is applied for refinement and verification, starting from the few best approximate poses produced by the previous stages. Experiments on real images demonstrate robust recognition of partially occluded objects in very high clutter environments
Keywords :
feature extraction; object recognition; clutter occlusion; fast nearest neighbor algorithm; high clutter images; line features; object recognition; partial occlusion; pose estimation; range search algorithm; Distortion measurement; Educational institutions; Image recognition; Military computing; Milling machines; Nearest neighbor searches; Object recognition; Powders; Refining; Robustness;
Conference_Titel :
Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on
Conference_Location :
Beijing
Print_ISBN :
0-7695-2334-X
DOI :
10.1109/ICCV.2005.173