DocumentCode :
2591833
Title :
Improving generalization for 3D object categorization with Global Structure Histograms
Author :
Madry, Marianna ; Ek, Carl Henrik ; Detry, Renaud ; Hang, Kaiyu ; Kragic, Danica
Author_Institution :
Centre for Autonomous Syst. & the Comput. Vision & Active Perception Lab., KTH R. Inst. of Technol., Stockholm, Sweden
fYear :
2012
fDate :
7-12 Oct. 2012
Firstpage :
1379
Lastpage :
1386
Abstract :
We propose a new object descriptor for three dimensional data named the Global Structure Histogram (GSH). The GSH encodes the structure of a local feature response on a coarse global scale, providing a beneficial trade-off between generalization and discrimination. Encoding the structural characteristics of an object allows us to retain low local variations while keeping the benefit of global representativeness. In an extensive experimental evaluation, we applied the framework to category-based object classification in realistic scenarios. We show results obtained by combining the GSH with several different local shape representations, and we demonstrate significant improvements to other state-of-the-art global descriptors.
Keywords :
image classification; image representation; object detection; shape recognition; solid modelling; 3D object categorization generalization; GSH encoding; category-based object classification; coarse global scale; global descriptors; global structure histograms; local shape representations; low local variations; realistic scenarios; structural characteristics encoding; three dimensional data; Data models; Databases; Encoding; Histograms; Image color analysis; Robustness; Shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on
Conference_Location :
Vilamoura
ISSN :
2153-0858
Print_ISBN :
978-1-4673-1737-5
Type :
conf
DOI :
10.1109/IROS.2012.6385874
Filename :
6385874
Link To Document :
بازگشت