• DocumentCode
    2598044
  • Title

    High precision ANN-based adaptive displacement tracking of piezoelectric actuators for MEMS

  • Author

    Chaoui, Hicham ; Sicard, Pierre ; Sawan, Mohamad

  • Author_Institution
    ReSMiQ, Ecole Polytech. de Montreal, Montréal, QC, Canada
  • fYear
    2010
  • fDate
    20-23 June 2010
  • Firstpage
    85
  • Lastpage
    88
  • Abstract
    In this paper, we introduce an artificial neural network (ANN) based motion control methodology of micro actuators for microelectromechanical systems (MEMS). The control strategy is based on a multilayer perception (MLP) trained online using a Lyapunov-based learning technique. The controller achieves high precision tracking under unknown system dynamics including hysteresis and external disturbance. Unlike other ANN control strategies, no a priori offline training or weights initialization is required. Simulation results highlight the performance of the proposed controller in compensating for hysteresis effect. The controller is suitable for very large scale integration (VLSI) implementation and can be used to improve static and dynamic performances of nanopositioning systems.
  • Keywords
    Lyapunov methods; microactuators; motion control; multilayer perceptrons; piezoelectric actuators; Lyapunov-based learning technique; MEMS; MLP; adaptive displacement tracking; artificial neural network; high precision ANN; hysteresis effect; microactuator; motion control; multilayer perception; piezoelectric actuator; Artificial neural networks; Dynamics; Hysteresis; Mathematical model; Nanopositioning; Piezoelectric actuators; Tracking;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    NEWCAS Conference (NEWCAS), 2010 8th IEEE International
  • Conference_Location
    Montreal, QC
  • Print_ISBN
    978-1-4244-6806-5
  • Electronic_ISBN
    978-1-4244-6804-1
  • Type

    conf

  • DOI
    10.1109/NEWCAS.2010.5603710
  • Filename
    5603710