Title :
Surface differentiation and localization by parametric modeling of infrared intensity scans
Author :
Aytaç, Tayfun ; Barshan, Billur
Author_Institution :
Dept. of Electr. Eng., Bilkent Univ., Ankara, Turkey
Abstract :
In this study, surfaces with different properties are differentiated with simple low-cost infrared (IR) emitters and detectors in a location-invariant manner. The intensity readings obtained from such sensors are highly dependent on the location and properties of the surface, which complicates the differentiation and localization process. Our approach, which models IR intensity scans parametrically, can distinguish different surfaces independent of their positions. The method is verified experimentally with wood, Styrofoam packaging material, white painted wall, white and black cloth, and white, brown, and violet paper. A correct differentiation rate of 100% is achieved for six surfaces and the surfaces are localized within absolute range and azimuth errors of 0.2 cm and 1.1°, respectively. The differentiation rate decreases to 86% for seven surfaces and to 73% for eight surfaces. The method demonstrated shows that simple IR sensors, when coupled with appropriate processing, can be used to differentiate different types of surfaces in a location-invariant manner.
Keywords :
infrared detectors; position control; IR intensity scans; Lambertian reflection; feature extraction; infrared detectors; infrared emitters; infrared intensity scans; infrared sensors; parametric modeling; position estimation; surface differentiation; Azimuth; Error correction; Infrared detectors; Infrared sensors; Intelligent sensors; Object detection; Optical reflection; Packaging; Parametric statistics; Sensor systems; Lambertian reflection; feature extraction; infrared sensors; position estimation; surface differentiation;
Conference_Titel :
Intelligent Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on
Print_ISBN :
0-7803-8912-3
DOI :
10.1109/IROS.2005.1545319