Title :
Unconditionally stable FETD method using Laguerre polynomials for eigenvalue problems
Author :
He, Guoqiang ; Shao, Wei ; Ma, Xiaoliang
Author_Institution :
Sch. of Phys. Electron., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
Abstract :
This paper presents an unconditionally stable finite-element time-domain (FETD) scheme to solve time-dependent vector wave equations for eigenvalue problems. With the weighted Laguerre polynomials as basis functions and Galerkin´s testing procedure, the temporal derivative in the vector wave equation can be handled analytically. Combined with the discrete Fourier transform (DFT), the Laguerre-FETD method is applied to the solution of eigenvalue problems. The numerical example of a circle dielectric-loaded waveguide shows its advantages of accuracy and efficiency.
Keywords :
Galerkin method; circular waveguides; dielectric-loaded waveguides; discrete Fourier transforms; eigenvalues and eigenfunctions; finite element analysis; polynomial approximation; time-domain analysis; wave equations; DFT; Galerkin testing procedure; Laguerre-FETD method; circle dielectric-loaded waveguide; discrete Fourier transform; eigenvalue problem; temporal derivative; time-dependent vector wave equation; unconditionally stable FETD method; unconditionally stable finite-element time-domain scheme; weighted Laguerre polynomials; Cutoff frequency; Eigenvalues and eigenfunctions; Electromagnetic waveguides; Finite element methods; Polynomials; Time domain analysis; Vectors; DFT; Eigenvalue; Laguerre-FETD; dielectric-loaded circle waveguide;
Conference_Titel :
Microwave and Millimeter Wave Circuits and System Technology (MMWCST), 2012 International Workshop on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4673-1893-8
DOI :
10.1109/MMWCST.2012.6238176