DocumentCode :
2602202
Title :
Improving foreground segmentations with probabilistic superpixel Markov random fields
Author :
Schick, Alexander ; Bäuml, Martin ; Stiefelhagen, Rainer
fYear :
2012
fDate :
16-21 June 2012
Firstpage :
27
Lastpage :
31
Abstract :
We propose a novel post-processing framework to improve foreground segmentations with the use of Probabilistic Superpixel Markov Random Fields. First, we convert a given pixel-based segmentation into a probabilistic superpixel representation. Based on these probabilistic superpixels, a Markov random field exploits structural information and similarities to improve the segmentation. We evaluate our approach on all categories of the Change Detection 2012 dataset. Our approach improves all performance measures simultaneously for eight different basis foreground segmentation algorithms.
Keywords :
Markov processes; image segmentation; object detection; probability; change detection 2012 dataset; foreground segmentation improvement; pixel-based segmentation; postprocessing framework; probabilistic superpixel Markov random fields; probabilistic superpixel representation; structural information; Benchmark testing; Change detection algorithms; Image segmentation; Markov random fields; Motion segmentation; Probabilistic logic;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition Workshops (CVPRW), 2012 IEEE Computer Society Conference on
Conference_Location :
Providence, RI
ISSN :
2160-7508
Print_ISBN :
978-1-4673-1611-8
Electronic_ISBN :
2160-7508
Type :
conf
DOI :
10.1109/CVPRW.2012.6238923
Filename :
6238923
Link To Document :
بازگشت