Title :
Compressed sensing and linear codes over real numbers
Author :
Zhang, Fan ; Pfister, Henry D.
Author_Institution :
Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX
fDate :
Jan. 27 2008-Feb. 1 2008
Abstract :
Compressed sensing (CS) is a relatively new area of signal processing and statistics that focuses on signal reconstruction from a small number of linear (e.g., dot product) measurements. In this paper, we analyze CS using tools from coding theory because CS can also be viewed as syndrome-based source coding of sparse vectors using linear codes over real numbers. While coding theory does not typically deal with codes over real numbers, there is actually a very close relationship between CS and error-correcting codes over large discrete alphabets. This connection leads naturally to new reconstruction methods and analysis. In some cases, the resulting methods provably require many fewer measurements than previous approaches.
Keywords :
error correction codes; linear codes; signal reconstruction; source coding; coding theory; compressed sensing; error-correcting codes; linear codes; signal processing; signal reconstruction; sparse vectors; syndrome-based source coding; Area measurement; Compressed sensing; Error correction codes; Linear code; Reconstruction algorithms; Signal processing; Signal reconstruction; Source coding; Statistics; Vectors;
Conference_Titel :
Information Theory and Applications Workshop, 2008
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4244-2670-6
DOI :
10.1109/ITA.2008.4601055