DocumentCode :
2604371
Title :
Deconvolution based criteria for parameter estimation of multidimensional non-Gaussian signal models using noisy data
Author :
Tugnai, Jitendm K.
Author_Institution :
Dept. of Electr. Eng., Auburn Univ., AL, USA
fYear :
1993
fDate :
3-6 May 1993
Firstpage :
303
Abstract :
A general (possibly asymmetric noncausal and/or nonminimum phase) two-dimensional autoregressive moving average random field model driven by an independent and identically distributed (i.i.d.) two-dimensional non-Gaussian sequence is considered. A novel class of performance criteria is investigated for parameter estimation of the system parameters given only the noisy output measurements (image pixels). The proposed criteria are functions of the higher-order cumulant statistics of an inverse filter output. Strong consistency of the proposed methods under the assumption that the system order is known is proved. The convergence of the proposed parameter estimators under overparametrization is analyzed
Keywords :
autoregressive moving average processes; convergence; parameter estimation; signal processing; 2D ARMA random field model; 2D nonGaussian sequence; autoregressive moving average; convergence; deconvolution bared criteria; higher-order cumulant statistics; inverse filter output; multidimensional non-Gaussian signal models; noisy data; overparametrization; parameter estimation; performance criteria; system parameters; Autoregressive processes; Deconvolution; Filters; Higher order statistics; Multidimensional systems; Parameter estimation; Parametric statistics; Phase noise; Statistical distributions; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Circuits and Systems, 1993., ISCAS '93, 1993 IEEE International Symposium on
Conference_Location :
Chicago, IL
Print_ISBN :
0-7803-1281-3
Type :
conf
DOI :
10.1109/ISCAS.1993.393718
Filename :
393718
Link To Document :
بازگشت