DocumentCode :
2604397
Title :
Packing radius vs covering radius
Author :
Solé, Patrick ; Stokes, Philip
Author_Institution :
CNRS, France
fYear :
1993
fDate :
17-22 Jan. 1993
Firstpage :
368
Lastpage :
368
Abstract :
Let Ci, i = 1,2,... denote an infinite family of binary codes with length ni, covering radius ri, minimum distance di. Assume that the limit p (resp. δ) of the ratio ri/ni (resp. di/ni) for large i exist and call it normalized covering radius (resp. distance). Our aim is to study the set Y2 (resp. Y2lin) of points (ρ, δ) of the unit square achieved by binary families of codes (resp. of linear codes). We address the following questions for both domains: 1. bounds on the extreme points 2. convexity 3. continuity at the border. Both sets split naturally into four subdomains according to the position of ρ and δ w.r.t. 1/2.
Keywords :
binary codes, covering radius, packing radius, asymptotic bounds; Binary codes; Entropy; Linear code; Linear programming; Upper bound;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1993. Proceedings. 1993 IEEE International Symposium on
Conference_Location :
San Antonio, TX, USA
Print_ISBN :
0-7803-0878-6
Type :
conf
DOI :
10.1109/ISIT.1993.748684
Filename :
748684
Link To Document :
بازگشت