DocumentCode :
2606422
Title :
A Mixed Precision Methodology for Mathematical Optimisation
Author :
Chow, Gary C T ; Luk, Wayne ; Leong, Philip H W
Author_Institution :
Dept. of Comput., Imperial Coll. London, London, UK
fYear :
2012
fDate :
April 29 2012-May 1 2012
Firstpage :
33
Lastpage :
36
Abstract :
This paper introduces a novel mixed precision methodology for mathematical optimisation. It involves the use of reduced precision FPGA optimisers for searching potential regions containing the global optimum, and double precision optimisers on a general purpose processor (GPP) for verifying the results. An empirical method is proposed to determine parameters of the mixed precision methodology running on a reconfigurable accelerator consisting of FPGA and GPP. The effectiveness of our approach is evaluated using a set of optimisation benchmarks. Using our mixed precision methodology and a modern reconfigurable accelerator, we can locate the global optima 1.7 to 6 times faster compared with quad-core optimiser. The mixed precision optimisations search up to 40.3 times more starting vector per unit time compared with quad core optimisers and only 0.7% to 2.7% of these searches are refined using GPP double precision optimisers. The proposed methodology also allows us to accelerate problems with more complicated functions or to solve problems involving higher dimensions.
Keywords :
field programmable gate arrays; optimisation; reconfigurable architectures; search problems; GPP double precision optimisers; double precision optimisers; general purpose processor; global optimum; mathematical optimisation; mixed precision methodology; modern reconfigurable accelerator; quadcore optimiser; reconfigurable accelerator FPGA; reduced precision FPGA optimisers; Benchmark testing; Clocks; Cost function; Educational institutions; Field programmable gate arrays; Vectors; FPGA; Nelder-Mead downhill simplex; mathematical optimisation; mixed-precision; reconfigurable;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE 20th Annual International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4673-1605-7
Type :
conf
DOI :
10.1109/FCCM.2012.16
Filename :
6239788
Link To Document :
بازگشت