DocumentCode :
2608082
Title :
Entropy and Hadamard matrices
Author :
Gadiyar, H. Gopalkrisbna ; Sangeeta, K.M. ; Padma, R. ; Sharatchandra, H.S.
Author_Institution :
AU-KBC Res. Centre, Anna Univ., Chennai, India
fYear :
2002
fDate :
20-25 Oct. 2002
Firstpage :
197
Abstract :
We define the entropy of an orthogonal matrix Oij. The entropy of the ith row can have the maximum value ln n, which is attained when each element of the row is ±1/√n. This gives the bound, H{Oij} ≤ n ln n. In general, the entropy of an orthogonal matrix cannot attain this bound because of the orthogonality constraint. In fact the bound is obtained only by the Hadamard matrices (rescaled by n- 12 /). Thus we have a new criterion for the Hadamard matrices (appropriately normalized): those orthogonal matrices which saturate the bound for entropy.
Keywords :
Hadamard matrices; entropy; information theory; Hadamard matrices; entropy; orthogonal matrix; Entropy; Equations; Error correction; Error correction codes; Lagrangian functions; Symmetric matrices;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 2002. Proceedings of the 2002 IEEE
Print_ISBN :
0-7803-7629-3
Type :
conf
DOI :
10.1109/ITW.2002.1115453
Filename :
1115453
Link To Document :
بازگشت