DocumentCode :
2611841
Title :
Benefits of Separable, Multilinear Discriminant Classification
Author :
Bauckhage, Christian ; Käster, Thomas
Author_Institution :
Deutsche Telekom Laboratories 10587 Berlin, Germany
Volume :
4
fYear :
2006
fDate :
20-24 Aug. 2006
Firstpage :
959
Lastpage :
959
Abstract :
This paper presents an empirical investigation of the merits of tensor-based discriminant classification for visual object detection. First, we briefly discuss 2D separable discriminant analysis for grey value image analysis. Then, we contrast this tensorial approach with classical linear discriminant analysis. Our findings on a standard data set for object detection in natural environments show that, for the task of image analysis, tensor-based discriminant classifiers perform very robust. They learn and run faster and also generalize better than conventional techniques based on vectorial representations of the data.
Keywords :
Image analysis; Image coding; Laboratories; Least squares approximation; Linear discriminant analysis; Object detection; Object recognition; Robustness; Runtime; Tensile stress;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2006. ICPR 2006. 18th International Conference on
ISSN :
1051-4651
Print_ISBN :
0-7695-2521-0
Type :
conf
DOI :
10.1109/ICPR.2006.321
Filename :
1700005
Link To Document :
بازگشت