DocumentCode :
2614104
Title :
Optimal sensor data linear compression in multisensor estimation fusion
Author :
Zhu, Yunmin ; Song, Enbin ; Zhou, Jie ; You, Zhisheng
Author_Institution :
Dept. of Math., Sichuan Univ., China
Volume :
6
fYear :
2003
fDate :
9-12 Dec. 2003
Firstpage :
5807
Abstract :
When there exists the limitation of communication bandwidth between sensors and a fusion center, one needs to optimally pre-compress sensor outputs -sensor observations or estimates before sensors´ transmission to obtain a constrained optimal estimation at the fusion center in terms of the linear minimum error variance criterion, or when an allowed performance loss constraint exists, one needs to design the minimum communications between sensors and the fusion center, which satisfies some performance loss constraints. This paper answers the above questions by using the matrix decomposition, pseudo-inverse, and eigenvalue techniques.
Keywords :
data compression; eigenvalues and eigenfunctions; matrix decomposition; sensor fusion; sensors; communication bandwidth; eigenvalue techniques; error variance criterion; matrix decomposition; multisensor estimation fusion; optimal estimation; pseudoinverse; sensor data linear compression; Bandwidth; Covariance matrix; Eigenvalues and eigenfunctions; Mathematics; Matrix decomposition; Modems; Performance loss; Propagation losses; Sensor fusion; Sensor systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 2003. Proceedings. 42nd IEEE Conference on
ISSN :
0191-2216
Print_ISBN :
0-7803-7924-1
Type :
conf
DOI :
10.1109/CDC.2003.1271931
Filename :
1271931
Link To Document :
بازگشت