DocumentCode :
2616491
Title :
On the number of symmetric Latin squares
Author :
Ye, Xiaorui ; Xu, Yunqing
Author_Institution :
Math. Dept., Ningbo Univ., Ningbo, China
fYear :
2011
fDate :
27-29 June 2011
Firstpage :
2366
Lastpage :
2369
Abstract :
The number of symmetric Latin squares is closely related with the security of the post-commutative quasigroups cipher. Let Ln denote the number of distinct n×n Latin squares. It is fairly well known that (n!)2nn-n2 ≤ Ln ≤ πk=1n (k!)n/k, and asymptotically Ln ~ (n/e)n2 as → ∞. Let Sn denote the number of distinct n×n symmetric Latin squares. In this paper, we give a lower bound of Sn and show that Sn ~ n! · n3/8n2 (n → ∞) when n is odd, and Sn ~ n! · (n-1)!!·n3/8n2 (n → ∞) when n is even.
Keywords :
cryptography; group theory; postcommutative quasigroups cipher; security; symmetric Latin square; Arrays; Equations; Estimation; Indexes; Presses; Security; Latin square; symmetric Latin square; symmetric interchange; symmetric quasi-Latin square;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Service System (CSSS), 2011 International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4244-9762-1
Type :
conf
DOI :
10.1109/CSSS.2011.5974464
Filename :
5974464
Link To Document :
بازگشت