DocumentCode :
2616801
Title :
Incremental FP_Growth Mining Algorithm Based on Web Information Extraction
Author :
Hong-ye, Chen ; Guo-ying, Jin
Author_Institution :
Sch. Inf. & Electron. Eng., Zhejiang Univ. of Sci. & Technol., Hangzhou, China
Volume :
1
fYear :
2009
fDate :
21-22 May 2009
Firstpage :
91
Lastpage :
93
Abstract :
This paper studies the incremental updating problem of frequent itemsets when the transaction database and the minimum support change in the Web information extraction. An algorithm of incremental FP_Growth mining based on frequent pattern tree is proposed and used to extract the transaction data in the second-hand IT trading site and generate association rules. Analysis and test show that the algorithm is efficient and feasible.
Keywords :
Internet; data analysis; data mining; database management systems; tree data structures; FP_growth mining algorithm; Web information extraction; association rule; frequent pattern tree; second-hand IT trading site; Algorithm design and analysis; Association rules; Data engineering; Data mining; Internet; Itemsets; Paper technology; Testing; Transaction databases; Web pages; Web information extraction; association rules; frequent itemsets; incremental FP_Growth mining algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Computing Science, 2009. ICIC '09. Second International Conference on
Conference_Location :
Manchester
Print_ISBN :
978-0-7695-3634-7
Type :
conf
DOI :
10.1109/ICIC.2009.30
Filename :
5169547
Link To Document :
بازگشت