DocumentCode :
261696
Title :
Comparison of RBF and local linear model networks for nonlinear identification of a pH process
Author :
Abdelhadi, Ahmed ; Gomm, J. Barry ; Dingli Yu ; Rajarathinam, Kumaran
Author_Institution :
Control Syst. Res. Group, Liverpool John Moores Univ., Liverpool, UK
fYear :
2014
fDate :
9-11 July 2014
Firstpage :
361
Lastpage :
366
Abstract :
This paper focuses on the nonlinear identification of an experimental pH neutralisation process using real data. The performances of radial basis function (RBF) and local linear model networks (LLMN) for identifying this significantly nonlinear process are compared. Results are presented to illustrate the choice of the various network parameters in the model structures for network training and validation data. The overall results demonstrate the practical ability of the two network structures for nonlinear system identification.
Keywords :
chemical reactors; identification; nonlinear systems; pH control; radial basis function networks; experimental pH neutralisation process; local linear model networks; network parameters; network training; nonlinear process; nonlinear system identification; radial basis function networks; validation data; Atmospheric modeling; Data models; Mean square error methods; Numerical models; Radial basis function networks; Training; Vectors; local linear model networks; nonlinear identification; pH processes; radial basis function networks;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control (CONTROL), 2014 UKACC International Conference on
Conference_Location :
Loughborough
Type :
conf
DOI :
10.1109/CONTROL.2014.6915167
Filename :
6915167
Link To Document :
بازگشت