DocumentCode :
2617463
Title :
A new dimensionality analysis algorithm for hyperspectral imagery
Author :
Luo, Xin ; Jiang, Ming-Fei
Author_Institution :
Dept. of Commun., Univ. of Electron. Sci. & Technol. of China, Chengdu, China
fYear :
2011
fDate :
27-29 June 2011
Firstpage :
1952
Lastpage :
1956
Abstract :
In the procedure of hyperspectral data dimensionality reduction (DR), intrinsic dimensionality (ID) of high-dimensional hyperspectral data is normally obtained through the linear dimensionality analysis methods. This article applies a kind of unsupervised learning method, manifold learning method, to the dimensionality analysis for hyperspectral data and gives a manifold-learning-based algorithm for dimensionality analysis of hyperspectral data. The experiments use ISOMAP, LLE, LE and LTSA algorithms to estimate the intrinsic dimensionality of hyperspectral simulated data and real data, get the two-dimension manifold figures of high-dimensional data and discuss the advantages and disadvantages of these algorithms in hyperspectral dimensionality analysis.
Keywords :
geophysical image processing; remote sensing; unsupervised learning; DR; ID; dimensionality analysis algorithm; hyperspectral data dimensionality reduction; hyperspectral remote sensing technology; hyperspectral simulated data; intrinsic dimensionality; linear dimensionality analysis methods; manifold learning method; unsupervised learning method; Algorithm design and analysis; Classification algorithms; Hybrid fiber coaxial cables; Hyperspectral imaging; Manifolds; hyperspectral; intrinsic dimensionality; manifold learning;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Service System (CSSS), 2011 International Conference on
Conference_Location :
Nanjing
Print_ISBN :
978-1-4244-9762-1
Type :
conf
DOI :
10.1109/CSSS.2011.5974518
Filename :
5974518
Link To Document :
بازگشت