DocumentCode :
2618147
Title :
Matrix product-form solutions with application to queueing theory
Author :
Sengupta, Bhaskar ; Yeung, Raymond W.
Author_Institution :
C&C Res. Lab., NEC USA, Princeton, NJ, USA
fYear :
1994
fDate :
27 Jun-1 Jul 1994
Firstpage :
373
Abstract :
We study a discrete time bivariate Markov chain {(Xξ, Nξ), ξ⩾0} in which the values of Xξ are represented by the nodes of a d-ary tree, and N ξ takes integer values between 1 and m. When d equals 1, our results reduce to the theory of matrix-geometric solutions developed by Neuts (1981)
Keywords :
Markov processes; discrete time systems; matrix multiplication; queueing theory; trees (mathematics); d-ary tree; discrete time bivariate Markov chain; matrix product-form solutions; matrix-geometric solutions; nodes; queueing theory; Algebra; National electric code; Queueing analysis; USA Councils;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
Type :
conf
DOI :
10.1109/ISIT.1994.394645
Filename :
394645
Link To Document :
بازگشت