Title :
Redundancy rates for renewal and other processes
Author :
Csiszár, Imre ; Shields, Paul
Author_Institution :
Inst. of Math., Bucharest, Romania
fDate :
27 Jun-1 Jul 1994
Abstract :
The paper addresses the theoretical issue of universal noiseless source coding, viz., the best possible redundancy bound achievable for a given class of source models by block to variable-length lossless coding. For parametric model classes such as memoryless or Markov sources, this bound grows as the log of the block-length n, [1,2,4]. The authors show that for the non-parametric class of renewal processes the growth rate is O(√n), while for the class of Markov renewal processes of order k the rate is O(nk+1k+2/)
Keywords :
Markov processes; block codes; memoryless systems; redundancy; source coding; variable length codes; Markov sources; block coding; block-length; growth rate; memoryless sources; nonparametric class; parametric model classes; redundancy bound; redundancy rates; renewal processes; source models; universal noiseless source coding; variable-length lossless coding; Length measurement; Mathematical model; Mathematics; Minimax techniques; Parametric statistics; Random variables; Source coding; Upper bound;
Conference_Titel :
Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on
Conference_Location :
Trondheim
Print_ISBN :
0-7803-2015-8
DOI :
10.1109/ISIT.1994.394790